718和750材料有什么区别?

龙港装饰网 2023-05-17 18:22 编辑:广磊 289阅读

718和750材料有什么区别?

Inconel 718与Inconel X750应用区别介绍

Inconel 718应用和特性:

Inconel 718合金已用于制作航空、航天和石油化工中的环件、叶片、紧固件和结构件等,制作石油化工中应用的多种零件,可批量生产且使用性况良好。合金在真空自耗重熔时可采用氦气冷却工艺,可有效减轻铌元素偏析,采用喷射成形工艺生产环件,可降低成本和周期,采用超塑成形可扩大生产范围。 适用于制作航空、航天和石油化工中的环件、叶片、紧固件和结构件等

Inconel X750应用和特性:

Inconel X750合金生产的产品有很多,由热处理不同其力学性能也不同,该合金主要用于制造航空发动机在800℃以下工作并要求强度较高、耐腐蚀的环形件、结构件和螺栓等零件,在540℃以下工作的具有中等或较低应力并要求耐松弛的平面弹簧和螺旋弹簧平面波形弹簧、周向螺旋弹簧、螺旋压簧、弹簧卡圈和密封圈等零件。。还可用于制造汽轮机涡轮叶片等零件。合金在固溶处理后可进行各种焊接,零件的热处理要在无硫的中性或还原气分中进行,以免发生curing,零件应避免在870-650度之间进行热冷处理,对大栽面的零件,为了防止裂纹固溶处理后应在空气中冷却。主要是作为轻水中压力壳,压水动力堆,和燃气轮机的叶轮,叶片,螺栓等紧固件。还有航空部件。

40Cr和718圆棒那个韧性好?

Inconel718沉淀硬化型高温合金,镍基合金,耐高温耐腐蚀。

Incone l718特性及应用领域概述:

该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能良好。能够制造各种形状复杂的零部件,在宇航、核能、石油工业及挤压模具中,在上述温度范围内获得了极为广泛的应用。

Incone l718相近牌号:

GH4169 、GH169(中国)、NC19FeNb(法国)、W.Nr.2.4668 、NiCr19Fe19Nb5(德国)

Inconel718 金相组织结构:

该合金标准热处理状态的组织由γ基体γ'、γ'、δ、NbC相组成

Inconel718工艺性能与要求:

1、因Inconel718合金中铌含量高,合金中的铌偏析程度与治金工艺直接有关。

2、为避免钢锭中的元素偏析过重,采用的钢锭直径不大于508mm。

3、经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。

4、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。

5、合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。

6、合金不同的固溶处理和时效处理工艺会得到不同的材料性能。由于γ”相的扩散速率较低,所以通过长时间的时效处理能使Inconel718合金获得最佳的机械性能。

Inconel718主要规格:

Inconel718无缝管、Inconel718钢板、Inconel718圆钢、Inconel718锻件、Inconel718法兰、Inconel718圆环、Inconel718焊管、Inconel718钢带、Inconel718直条、Inconel718丝材及配套焊材、Inconel718圆饼、Inconel718扁钢、Inconel718六角棒、Inconel718大小头、Inconel718弯头、Inconel718三通、Inconel718加工件、Inconel718螺栓螺母、Inconel718紧固件。

篇幅有限,如需更多更详细介绍,欢迎咨询了解。

40cr属于合金钢

GH4169(GH169)高温合金

GH4169合金是以体心四方的γ和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 

该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。

GH4169 材料牌号 GH4169(GH169) 

GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法 国)

GH4169 材料的技术标准 

GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 

HB 6702-1993 《WZ8系列用GH4169合金棒材》

GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 

GJB 1952 《航空用高温合金冷轧薄板规范》 

GJB 1953 《航空发动机转动件用高温合金热轧棒材规范》

GJB 2612 《焊接用高温合金冷拉丝材规范》

GJB 3317 《航空用高温合金热轧板材规范》 

GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 

GJB 3020 《航空用高温合金环坯规范》 

GJB 3167 《冷镦用高温合金冷拉丝材规范》 

GJB 3318 《航空用高温合金冷轧带材规范》 

GJB 2611 《航空用高温合金冷拉棒材规范》 

YB/T5247 《焊接用高温合金冷拉丝》 

YB/T5249 《冷镦用高温合金冷拉丝》 

YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 

GB/T14993 《转动部件用高温合金热轧棒材》

GB/T14994 《高温合金冷拉棒材》 

GB/T14995 《高温合金热轧板》 

GB/T14996 《高温合金冷轧薄板》

GB/T14997 《高温合金锻制圆饼》 

GB/T14998 《高温合金坯件毛坏》 

GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 

HB 5199 《航空用高温合金冷轧薄板》 

HB 5198 《航空叶片用变形高温合金棒材》 

HB 5189 《航空叶片用变形高温合金棒材》

HB 6072 《WZ8系列用GH4169合金棒材》 

GH4169化学成分:%

C P S Mn Si Ni Cr Cu Al Co Mo Ti Nb Fe

≤0.08 ≤0.015 ≤0.02 ≤0.35 ≤0.35 50.0~55.0 17.0~21.0 ≤0.30 0.20~0.80 ≤1.00 2.80~3.30 0.65~1.15 4.75~5.50 余量 

余量该合金的化学成分分为3类:标准成分、优质成分、高纯成分。优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。同时减少有害杂质和气体含量。高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。

核能应用的GH4169合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。 

当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。

GH4169 热处理制度 

合金具有不同的热处理制度,以控制晶粒度、控制δ相形貌、分布和数量,从而获得不同级别的 力学性能。合金热处理制度分3类 

Ⅰ:(1010~1065)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。

经此制度处理的材料晶粒粗化,晶界和晶内均无δ相,存在缺口敏感性,但对提高冲击性能和抵抗低温氢脆有利。 

Ⅱ:(950~980)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。 

经此制度处理的材料有δ相,有利于消除缺口敏感性,是最常用的热处理制度,也称为标准热处理制度。 

Ⅲ:720℃±5℃,8h,以50℃/h炉冷至620℃±5℃,8h,空冷。 

经此制度处理后,材料中的δ相较少,能提高材料的强度和冲击性能。该制度也称为直接时效热处理制度。 

GH4169 品种规格和供应状态

可以供应模锻件(盘、整体锻件)、饼、环、棒(锻棒、轧棒、冷拉棒)、板、丝、带、管、不同形状和尺寸的紧固件、弹性元件等、交货状态由供需双方商定。丝材以商定的交货状态成盘状交货。 

GH4169 熔炼和铸造工艺

合金的冶炼工艺分为3类:真空感应加电渣重熔;真空感应加真空电弧重熔;真空感应加电渣重熔加真空电弧重熔。可根据零件的使用要求,选择所需的冶炼工艺,满足应用要求。

GH4169 应用概况与特殊要求 

制造航空和航天发动机中的各种静止件和转动件,如盘、环件、机匣、轴、叶片、紧固件、弹性元件、燃气导管、密封元件等和焊接结构件;制造核能工业应用的各种弹性元件和格架;制造石油和化工领域应用的零件及其他零件。 

近年来,在对该合金研究不断深化和对该合金应用不断扩大的基础上,为提高质量和降低成本,发展了很多新工艺:真空电弧重熔是采用氦气冷却工艺,有效减轻铌偏析;采用喷射成型工艺,生产环件,降低生产成本和缩短生产周期;采用超塑成型工艺,扩大产品的生产范围。

GH4169 熔化温度范围 1260~1320℃。 

GH4169密度 ρ=8.24g/cm3。 

GH4169磁性能 合金无磁性。 

GH4169相变温度 

γ相是该合金的主要强化相,其最高稳定温度是650℃,开始固熔温度为840~870℃,完全固熔温度是950℃,γ′相也是该合金的强化相,但数量少于γ相,其析出温度是600℃,完全熔解温度是840℃;δ相的开始析出温度是700℃,析出峰温度是940℃,980℃开始熔解,完全熔解温度是1020℃。

GH4169合金组织结构

合金标准热处理状态的组织由γ基体、γ′、γ、δ、NbC相组成。γ(Ni3Nb)相是主要强化相,为体心四方有序结构的亚稳定相,呈圆盘状在基体中弥散共格析出,在长期时效或长期应用期间,有向δ相转变的趋势,使强度下降。γ′(Ni3(Al、Ti))相的数量次于γ相,呈球状弥散析出,对合金起一部分强化作用。δ相主要在晶界析出,其形貌与锻造期间的终锻温度有关,终锻温度在900℃,形成针状,在晶界和晶内析出;终锻温度达930℃,δ相呈颗粒状,均匀分布;终锻温度达950℃,δ相呈短棒状,分布于晶界为主;终锻温度达980℃,在晶界析出少量针状δ相,锻件出现持久缺口敏感性。终锻温度达到1020℃或更高,锻件中无δ相析出,晶粒随之粗化,锻件有持久缺口敏感性。锻造过程中,δ相在晶界析出,能起到钉扎作用,阻碍晶粒粗化。 

L相是变形GH4169合金中不允许存在的相,该相富铌,存在于铸锭枝晶间,降低铸锭初熔点,铸锭

中L相固溶温度和均匀化时间的关系。 

GH4169工艺性能与要求 

因GH4169合金中铌含量高,合金中的铌偏析程度与冶金工艺直接相关。电渣重熔和真空电弧熔炼的熔炼速度和电极棒的质量状态直接影响材质的优劣。熔速快,易形成富铌的黑斑;熔速慢,会形成贫铌的白斑;电极棒表面质量差和电极棒内部有裂纹,均易导致白斑的形成,所以,提高电极棒质量和控制熔速及提高钢锭的凝固速率是冶炼工艺的关键因素。为避免钢锭中的元素偏析过重,至今采用的钢锭直径不大于508mm。

均匀化工艺必须确保钢锭中的L相完全熔解。钢锭两阶段均匀化和中间坯二次均匀化处理的时间,根据钢锭和中间坯的直径而定。均匀化工艺的控制与材料中的铌偏析程度直接相关。

目前生产中采用的1160℃,20h±1180℃,44h的均匀化工艺,尚不足以消除钢锭中心的偏析,因此建议采用以下均匀化工艺: 

1. 1150~1160℃,20~30h+1180~1190℃,110~130h; 

2. 1160℃,24h+1200℃,70h[20]。

经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。锻件的锻造工艺应根据锻件使用状况和应用要求,结合生产厂的生产条件而定。开坯和生产锻件是,中间退火温度和终锻温度必须根据零件所要求的组织状态和性能来确定,一般情况下,锻造的终锻温度控制在930~950℃之间为宜。 

GH4169焊接性能 

合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。 

对直接时效状态的零部件,推荐采用惯性摩擦焊以保持其强化效果,选用合适的摩擦焊工艺参数,在保留细晶组织的同时,焊缝边缘及热影响区还可以保留强化相γ′和γ以及δ相,因此对接头性能无明显影响,对直接时效的锻件,可在锻造状态进行摩擦焊,焊后再进行直接时效处理(制度Ⅲ),可获得持久强度很高的焊接接头。

GH4169零件热处理工艺

航空零件的热处理通常按1.5条规定的Ⅱ、Ⅲ两种制度,即标准热处理制度和直接时效热处理制度进行。再有技术依据的条件下,也可采用其他制度热处理。按标准制度热处理时,固溶处理可在950~980℃范围内,在选定的温度±10℃下进行。

GH4169表面处理工艺 

必要时可对零件表面局面进行喷丸强化、孔挤压强化或螺纹滚压强化工序,使零件在交变载荷条件下工作的寿命成倍增长。 

对要求喷涂耐磨封严涂层的零件,可采用等离子喷涂或爆炸喷涂工艺,以爆炸喷涂为佳,爆炸喷涂涂层与基体结合强度高,涂层致密、硬度高、孔隙率低,耐磨性好。 

GH4169切削加工与磨削性能 

合金可满意地进行切削加工。 

机械加工时必须确保圆弧达到设计要求和平滑过渡,不允许在机械加工、装配或运输中出现尖角、坑与划伤缺口,因为在这些缺陷出,可形成过量的应力集中,在使用中会导致严重事故的发生。

40cr属于合金钢,718有模具钢和高温合金两种材质,718高温合金韧性好点

40cr属于合金钢

718属于镍基高温合金,不是一个级别的,718比合金钢性能好很多的,主要用作模具设备

40cr属于合金钢

718属于镍基高温合金,不是一个级别的,718比合金钢性能好很多的,主要用作模具设备